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On the Connectivity and Multihop Delay of Ad Hoc Cognitive

Radio Networks

Wei Ren, Qing Zhao, Ananthram Swami

Abstract

We analyze the multihop delay of ad hoc cognitive radio networks, where the transmission delay of

each hop consists of the propagation delay and the waiting time for the availability of the communication

channel (i.e., the occurrence of a spectrum opportunity at this hop). Using theories and techniques

from continuum percolation and ergodicity, we establish the scaling law of the minimum multihop

delay with respect to the source-destination distance in cognitive radio networks. When the propagation

delay is negligible, we show the starkly different scaling behavior of the minimum multihop delay in

instantaneously connected networks as compared to networks that are only intermittently connected

due to scarcity of spectrum opportunities. Specifically, if the network is instantaneously connected,

the minimum multihop delay is asymptotically independent of the distance; if the network is only

intermittently connected, the minimum multihop delay scales linearly with the distance. When the

propagation delay is nonnegligible but small, we show that although the scaling order is always linear,

the scaling rate for an instantaneously connected network can be orders of magnitude smaller than the

one for an intermittently connected network.

Index Terms

Cognitive radio network, multihop delay, connectivity, intermittent connectivity, continuum perco-

lation, ergodic theory.

I. INTRODUCTION

The basic idea of opportunistic spectrum access is to achieve spectrum efficiency and interop-

erability through a hierarchical access structure with primary and secondary users [1]. Secondary

users, equipped with cognitive radios [2] capable of sensing and learning the communication
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environment, identify and exploit instantaneous and local spectrum opportunities without causing

unacceptable interference to primary users [1].

In this technical report, we focus on the connectivity and multihop delay of ad hoc cognitive

radio networks. Due to the hierarchical structure of the spectrum sharing, these issues are

fundamentally different from their counterparts in the conventional homogeneous networks. In

particular, even in a static secondary network, the communication links are dynamic due to the

spatial and temporal dynamics of the primary traffic. As a consequence, the connectivity of the

secondary network depends not only on its own topological structure, but also on the topology,

traffic pattern/load, and interference tolerance of the primary network. The multihop delay in

the secondary network consists of not only the propagation delay but also the waiting time at

each hop for the availability of the communication channel, i.e., the occurrence of a spectrum

opportunity offered by the primary network. It is this interaction with the primary network that

complicates the analysis of the connectivity and multihop delay of the secondary network.

A. Main Results

Our technical approach rests on theories of continuum percolation and ergodicity by adopting

a two-dimentional Poisson model for both the secondary and the primary networks. A disk model

for signal propagation and interference is used as a starting point, which allows us to highlight

the fundamental interactions between the primary and the secondary networks without delving

into potentially intractable details.

We first analytically characterize the connectivity of the secondary network, where the connec-

tivity is defined by the finiteness of the minimum multihop delay (MMD) between two randomly

chosen secondary users. Specifically, the network is disconnected if the MMD between two

randomly chosen secondary users is infinite almost surely (a.s.). The network is connected if the

MMD between two randomly chosen secondary users is finite with a positive probability.

Under the Poisson model, the key parameter that characterizes the topological structure of

the secondary network is the density λS of the secondary users. For a given transmission power

and interference tolerance of the primary network, the key parameter that characterizes the

impact of the primary network is the density λPT of the primary transmitters that represents

the traffic load of the primary network. The connectivity of the secondary network can thus be

characterized by a partition of the (λS, λPT ) plane as shown in Fig. 1. Specifically, we show that
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when the temporal dynamics of the primary traffic is sufficiently rich (for example, independent

realizations of active primary transmitters and receivers across slots), whether the secondary

network is connected depends solely on its own density λS and is independent of the density

λPT of the primary transmitters. In other words, no matter how heavy the primary traffic is, the

secondary network is connected, either instantaneously or intermittently, as long as its density

λS exceeds the critical density λc of a homogeneous network (i.e., in the absence of the primary

network). Note that when λS > λc, there is a.s. a unique infinite connected component in the

secondary network formed by topological links connecting two secondary users within each

other’s transmission range. We further show that for any two secondary users in this infinite

topologically connected component, the MDD is finite a.s.

λPT

λSλ∗
S = λc

λ∗
PT (λS)

0

Instantaneously Connected C

Intermittently Connected CI

Disconnected

Fig. 1. Connectivity of ad hoc cognitive radio networks (the critical density λ∗
S of the secondary users is defined as the infimum

density of the secondary users that ensures instantaneous connectivity under a positive density of the primary transmitters, and

is equal to the critical density λc of a homogeneous network; the upper boundary λ∗PT (λS) is defined as the supremum density

of the primary transmitters that ensures instantaneous connectivity with a fixed density of the secondary users).

While the secondary network is connected and the MDD is finite with positive probability

whenever there are sufficient topological links (i.e., λS > λc), there may not be sufficient

communication links to make the network instantaneously connected at any given time. The

latter is determined by the traffic load of the primary network. As illustrated in Fig. 1, for

any given density λS of the secondary network with λS > λc, there exists a maximum density

λ∗
PT (λS) of the primary transmitters beyond which the secondary network is only intermittently

connected. When intermittently connected, the secondary network has no infinite connected
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component formed by communication links at any given time. Messages can only traverse the

topological path connecting two secondary users by making stops in between to wait for spectrum

opportunities.

It is thus natural to expect that the MDD will behave differently in an instantaneously

connected secondary network as compared to an intermittently connected secondary network.

Indeed, we show that the scaling behavior of the MDD with respect to the source-destination

distance is starkly different depending on the type of the connectivity. To highlight the impact of

the waiting time for spectrum opportunities on the MMD, we first ignore the propagation delay.

Let μ be the source, ν the destination, t(μ, ν) the MMD from μ to ν, and d(μ, ν) the distance

between μ and ν. We show that, a.s.

lim
d(μ,ν)→∞

t(μ, ν)

d(μ, ν)

⎧⎨
⎩ = 0, if instantaneously connected;

> 0, if intermittently connected.

When the secondary network is instantaneously connected, a much stronger statement is actually

shown, that is,

lim
d(μ,ν)→∞

t(μ, ν)

g(d(μ, ν))
= 0 a.s.,

where g(d(μ, ν)) is any monotonically increasing function of d(μ, ν) satisfying lim
d(μ,ν)→∞

g(d(μ, ν)) =

∞. It implies that the MMD t(μ, ν) is asymptotically independent of the distance d(μ, ν) as

d(μ, ν) → ∞. Thus when the propagation delay is negligible, an instantaneously connected CR

network behaves almost the same as a homogeneous ad hoc network in the sense that the waiting

time for spectrum opportunities does not affect the scaling law of the MMD with respect to the

distance. On the other hand, if a CR network is intermittently connected, the waiting time for

the spectrum opportunities accumulates linearly with the source-destination distance, resulting

in a fundamental difference in the MMD as compared to a homogeneous network.

The above scaling law may be illustrated by an analogy of traveling from a place μ to another

place ν, where the waiting time for the spectrum opportunities is likened to the waiting time for

traffic lights. Suppose that we can move fast enough such that the driving time on the road is

negligible. When the secondary network is instantaneously connected, there exists a.s. an infinite

connected component consisting of communication links which can be considered a highway

without traffic lights between μ and ν. Given that both μ and ν are within a finite distance to

the highway (independent of the distance between μ and ν), the travel time from μ to ν, which
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is the waiting time for traffic lights before entering the highway and after leaving the highway,

is independent of the distance between μ and ν. When the secondary network is intermittently

connected, such a highway between μ and ν can not be found. Then we have to use local paths

and wait for traffic lights from time to time, leading to the linear scaling of the travel time with

respect to the distance between μ and ν even when the driving time is ignored.

We also study the impact of the propagation delay on the MMD. When the propagation delay

τ is nonnegligible, we show that the MMD scales linearly with the source-destination distance

in both instantaneously connected and intermittently connected regimes, but with different rates.

In particular, the limiting behavior of the rate as τ → 0 is distinct in the two regimes, i.e., a.s.

lim
τ→0

lim
d(μ,ν)→∞

t(μ, ν)

d(μ, ν)

⎧⎨
⎩ = 0, if instantaneously connected;

> 0, if intermittently connected.

It indicates that when the propagation delay is sufficiently small, the scaling rate of the MMD

for an instantaneously connected network is much smaller than the one for an intermittently

connected network.

B. Related Work

As a fundamental indicator of the feasibility and efficiency of large-scale wireless networks,

the scaling law has received increasing interest in the research community since the seminal work

of Gupta and Kumar [3]. The capacity scaling law of CR networks has been analyzed in [4–6].

In [4], the authors also derive the capacity-delay tradeoff for a specific routing and scheduling

algorithm which is shown to achieve the optimal capacity-delay tradeoff for homogeneous

networks. To our best knowledge, the scaling law of the MMD with respect to the source-

destination distance in a CR network has not been characterized in the literature.

The scaling law of the multihop delay in homogeneous ad hoc networks has been well studied

(see [7–17] and references therein). The multihop delay for a specific routing algorithm is

analyzed in [7–9], and the capacity-delay tradeoff is established under a given network and

mobility model in [10–12]. Theoretical bounds on the information propagation speed defined as

the ratio of the travel distance to the multihop delay are derived for a static network in [13, 14]

or for a mobile network in [15]. Based on continuum percolation theory, the scaling law of

the multihop delay with respect to the source-destination distance is established in [16, 17]. In
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particular, Kong and Yeh considered in [17] homogeneous ad hoc networks with dynamic on-off

links and showed that the scaling of the MMD behaves distinctly in two regimes, depending on

whether the network is percolated. In this paper, we use techniques in continnum percolation

that are similar to those used in [17]. A major difference is that the states of the links in the

secondary network considered in this technical report are correlated instead of independent,

which complicates the analysis of multihop delay.

There are also a number of results on intermittently connected networks (see, for example, [18–

21]), where the intermittent connectivity is caused by node mobility or duty cycling, instead of

spatial and temporal dynamics of spectrum opportunities. The problem and the technical approach

are generally different.

II. NETWORK MODEL

We consider a Poisson distributed secondary network overlaid with a Poisson distributed

primary network in an infinite two dimensional Euclidean space1. The primary network adopts a

synchronized slotted structure with a slot length TS . The realizations of active primary transmit-

ters vary from slot to slot and are assumed to be i.i.d. across slots2. Thus TS can be considered

as the time constant of the spectrum opportunities which are determined by the transmitting and

receiving activities of the primary users. Without loss of generality, we set TS = 1.

At the beginning of each slot, the primary transmitters are distributed according to a two-

dimensional Poisson point process XPT with density λPT . Primary receivers are uniformly

distributed within the transmission range Rp of their corresponding transmitters. Here we have

assumed that all the primary transmitters use the same transmission power and the transmitted

signals undergo an isotropic path loss. Based on the displacement theorem [22, Chapter 5], it is

easy to see that the primary receivers form another two-dimensional Poisson point process XPR

with density λPT , which is correlated with XPT .

The secondary users are distributed according to a two-dimensional Poisson point process XS

with density λS , which is independent of XPT and XPR. The locations of the secondary users

1This infinite network model is equivalent in distribution to the limit of a sequence of finite networks with a fixed density as

the area of the network increases to infinity, i.e., the so-called extended network.

2The different realizations of active primary transmitters in different slots can be caused by the mobility of these users or

changes in the traffic pattern or both.
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are static over time, and they have a uniform transmission range rp.

III. CONNECTIVITY

In this section, we examine the connectivity of the secondary network by analytically char-

acterizing the partition of the (λS, λPT ) plane illustrated in Fig. 1.

A. Topological Link vs. Communication Link

Topological links in the secondary network are independent of the primary network. A topo-

logical link exists between any two secondary users that are within each other’s transmission

range. In contrast, the existence of a communication link between two secondary users depends

not only on the distance between them but also on the availability of the communication channel,

i.e., the presence of a spectrum opportunity offered by the primary network. As a result, even in a

static secondary network, communication links are time-varying due to the temporal dynamics of

spectrum opportunities. The presence of a spectrum opportunity is determined by the transmitting

and receiving activities of the primary network as described below.

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

μ ν

Interference

rI

RI

Primary Tx

Primary Rx

Fig. 2. Definition of spectrum opportunity. μ and ν denote secondary transmitter and receiver. rI and RI denote the interference

radii of the secondary and primary users. A spectrum opportunity from μ to ν exists only if there are no primary receivers

within the solid circle and no primary transmitters within the dashed circle.

We consider the disk signal propagation and interference model as illustrated in Fig. 2. There

exists an opportunity from μ, the secondary transmitter, to ν, the secondary receiver, if the
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transmission from μ does not interfere with primary receivers in the solid circle, and the

reception at ν is not affected by primary transmitters in the dashed circle [23]. Referred to

as the interference range of the secondary users, the radius rI of the solid circle at μ depends

on the transmission power of μ and the interference tolerance of the primary receivers, whereas

the radius RI of the dashed circle (the interference range of the primary users) depends on the

transmission power of the primary users and the interference tolerance of ν.

It is clear from the above discussion that spectrum opportunities are asymmetric. Specifically,

a channel that is an opportunity when μ is the transmitter and ν the receiver may not be an

opportunity when ν is the transmitter and μ the receiver. Since unidirectional links are difficult

to utilize, especially for applications with guaranteed delivery that require acknowledgements,

we only consider bidirectional links in the secondary network when we define connectivity.

B. Connectivity and the Finiteness of MMD

As stated in Sec. I, the connectivity of the secondary network is defined by the finiteness of

the MDD between two randomly chosen secondary users. In this section, we show that while

the transmissions between two secondary users can only be carried by communication links, the

finiteness of the MMD depends solely on the topological connectivity of the secondary network

when the temporal dynamics of the primary traffic is sufficiently rich.

Consider an undirected random graph GS(λS) consisting of all the secondary users and the

topological links. Notice that GS(λS) depends only on the Poisson point process XS of the

secondary network. Under the i.i.d. model of the temporal dynamics of the primary traffic, we

show in Theorem 1 below that a necessary and sufficient condition for the a.s. finiteness of the

MMD in the secondary network is the connectivity of GS(λS) in the percolation sense.

Theorem 1: Let t(μ, ν) denote the MMD between two randomly chosen secondary users μ

and ν. Then with a positive probability, t(μ, ν) < ∞ a.s. if and only if λS > λc where λc is the

critical density of homogeneous ad hoc networks.

Proof: It follows from the classic result on homogeneous networks [24, Chapter 3] that

there exists an infinite connected component in GS(λS) if and only if λS > λc, where λc is the

critical density of homogeneous networks.

If λS ≤ λc, then there exist only finite connected components in GS(λS); there is no topological

path between μ and ν a.s., i.e., t(μ, ν) = ∞ a.s. On the other hand, if λS > λc, then with a
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positive probability μ and ν belong to the infinite topologically connected component3. In other

words, there exists a topological path L with finite number of hops between μ and ν. Let tL(μ, ν)

denote the multihop delay from μ to ν along the path L. Next we prove the a.s. finiteness of

tL(μ, ν) by showing the following lemma about the single-hop delay.

Lemma 1: Let ts(w1, w2) denote the single-hop delay from w1 to w2, where w1 and w2 are

connected via a topological link. Then we have that ts(w1, w2) < ∞ a.s.

Proof of Lemma 1: Assume that τ ≤ TS = 1 such that the spectrum opportunity lasts long

enough to ensure the success of the transmission, and w1 intends to transmit the message at time

0. It follows from Sec. III-A that the single-hop delay ts(w1, w2) is the waiting time tsw(w1, w2)

for the presence of the first bidirectional opportunity plus the propagation delay τ , i.e.,

ts(w1, w2) = tsw(w1, w2) + τ = arg min
n∈{0,1,2,...}

{I(w1,w2)(n) = 1} + τ,

where I(w1,w2)(n) be an indicator such that I(w1,w2)(n) = 1 if a bidirectional opportunity exists

between w1 and w2 during the nth primary slot, and I(w1,w2)(t) = 0 otherwise.

Due to the i.i.d. distribution of the primary network across slots, tsw(w1, w2) is a geometric

random variable with parameter p0, where p0 is the probability of having a bidirectional oppor-

tunity between w1 and w2 at any given time and is always strictly positive (see Appendix A).

Thus, tsw(w1, w2) < ∞ a.s., and ts(μ, ν) < ∞ a.s.

Since tL(μ, ν) is a finite sum of single-hop delays, we have that tL(μ, ν) < ∞ a.s. Thus,

t(μ, ν) ≤ tL(μ, ν) < ∞ a.s.

Theorem 1 shows that under the i.i.d. model of the temporal dynamics of the primary traffic,

the connectivity of the secondary network defined by the finiteness of the MMD is equivalent

to the topological connectivity of GS(λS) which is independent of the primary network. In other

words, no matter how heavy the primary traffic is, the MMD between two secondary users in

the infinite topologically connected component of GS(λS) is finite a.s.

We point out that the i.i.d. model of the temporal dynamics of the primary traffic is not

necessary for Theorem 1 to hold. This i.i.d. model can be considered as one end of the spectrum

on the richness of the temporal dynamics of the primary traffic. The other end of the spectrum

is given by a static set of primary transmitters and receivers. In this case, the finiteness of MMD

3It is shown in [24, Theorem 3.6] that when λS > λc, there exists a unique infinite connected component in GS(λS) a.s.
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can only be achieved through instantaneous connectivity using only communication links. It is

an interesting future direction to obtain necessary conditions on the temporary dynamics of the

primary traffic that ensures the equivalence between the finiteness of MMD and the topological

connectivity of GS(λS). From the proof of Theorem 1 we can see that this equivalence holds

whenever the temporary dynamics of the primary traffic makes the single-hop delay have a

proper distribution.

C. Instantaneous Connectivity vs. Intermittent Connectivity

In a primary slot t, we can obtain an undirected random graph GH(λS, λPT , t) consisting of all

the secondary users and the communication links which represents the instantaneous connectivity

of the secondary network in this slot. As illustrated in Fig. 3, this graph GH(λS, λPT , t) is

determined by the three Poisson point processes in slot t: XS , XPT , and XPR, where XPT and

XPR are correlated.

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

Primary Tx
Primary Rx
Secondary User

rI

RI

Fig. 3. A realization of the random graph GH(λS, λPT , t) which consists of all the secondary users and all the communication

links in the primary slot t (denoted by solid lines). The solid circles denote the interference regions of the primary transmitters

within which secondary users can not successfully receive, and the dashed circles denote the required protection regions for the

primary receivers within which secondary users should refrain from transmitting.

We define the instantaneous connectivity of the secondary network as the a.s. existence of an

infinite connected component in GH(λS, λPT , t) for all t. Given the transmission power and the

interference tolerance of both the primary and the secondary users (i .e., Rp, RI , rp, and rI are
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fixed), the instantaneous connectivity region C is defined as

C Δ
= {(λS, λPT ) : GH(λS, λPT , t) is connected for all t}.

A detailed analytical characterization of C is given in [25]. Let θ(λS, λPT ) denote the probability

that an arbitrary secondary user belongs to an infinite connected component4 in GH(λS, λPT , t),

then we have that

θ(λS, λPT )

⎧⎨
⎩ > 0, if (λS, λPT ) ∈ C;

= 0, otherwise.
(1)

Referred to as the critical density of the secondary users, λ∗
S is the infimum density of the

secondary users that ensures instantaneous connectivity under a positive density of primary

transmitters:

λ∗
S

Δ
= inf{λS : ∃λPT > 0 such that GH(λS, λPT , t) is connected for all t}.

It is shown in [25] that λ∗
S equals the critical density λc of a homogeneous ad hoc network.

GH(λS, λPT , t) can also be obtained by removing topological links that do not see the opportu-

nities in slot t from the random graph GS(λS). Thus, even if the secondary network is connected

(i.e., GS(λS) has an infinite connected component), it may not be instantaneously connected.

Specifically, the infinite connected component in GS(λS) may break into infinite number of

finite connected components in GH(λS, λPT , t) due to scarcity of spectrum opportunities. In this

case, we define the intermittent connectivity region CI as

CI
Δ
= {(λS, λPT ) : λS > λc and GH(λS, λPT , t) is disconnected for all t}.

IV. MULTIHOP DELAY

In this section, we analytically characterize the scaling behavior of the MMD with respect to

the source-destination distance. Let C(GS(λS)) be the infinite connected component in GS(λS)

when λS > λc, i.e., the secondary network is connected. We seek to establish the scaling law

of the MMD between two arbitrary users in C(GS(λS)) with respect to the distance between

them. As shown in the following two subsections which consider the two cases when the

propagation delay τ = 0 and τ > 0, whether the secondary network is instantaneously connected

or intermittently connected determines the scaling behavior of the MMD.

4Since the distribution of the primary network is i.i.d. across slots, it is easy to see that this probability θ is time-invariant.
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A. Negligible Propagation Delay

When the propagation delay τ = 0, once a user has received the message, it can spread the

message instantaneously throughout the connected component formed by communication links

which contains it. Thus, if the secondary network is instantaneously connected, the source can

route its message via the infinite connected component such that the message can make a huge

step towards the destination within a single primary slot. As we will see, this huge step in the

infinite connected component leads to the asymptotic independence of the MMD on the source-

destination distance. On the other hand, if the secondary network is intermittently connected,

the message can move forward only a limited step within each primary slot, which results in the

linear scaling of the MMD. A mathematical statement about the scaling is given in the following

theorem.

Theorem 2: Assume that τ = 0. For any two secondary users μ, ν ∈ C(GS(λS)), where

C(GS(λS)) is the infinite connected component of GS(λS), let t(μ, ν) denote the MMD from μ

to ν and d(μ, ν) the distance between μ and ν; then

T2.1 if (λS, λPT ) ∈ C,

lim
d(μ,ν)→∞

t(μ, ν)

g(d(μ, ν))
= 0 a.s.,

where g(d) is any monotonically increasing function of d with lim
d→∞

g(d) = ∞;

T2.2 if (λS, λPT ) ∈ CI , ∃ 0 < β < ∞ such that

lim
d(μ,ν)→∞

t(μ, ν)

d(μ, ν)
= β a.s., (2)

where the value of β depends on (λS, λPT ).

To simplify the notation, let the minimum path denote the path from the source to the

destination with the MMD. Notice that the minimum path depends on both the topology of

the secondary network and the realizations of the primary network over time. In other words,

the minimum path for one realization of the primary network may not be the minimum path for

another realization of the primary network. It is, thus, intractable to directly study the minimum

path between the source and the destination. Instead, we analyze the multihop delay along a

constructed path to provide an upper bound on the MMD for an instantaneously connected

network, and derive a lower bound on the MMD for an intermittently connected network by

considering a.s. finiteness of the connected components formed by communication links. In the
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proof, we borrow techniques and theories from continuum percolation and ergodicity, including

the discretization technique, the FKG inequality, and the Subadditive Ergodic Theorem [26].

Proof of T2.1: We use the infinite connected component5 in GH(λS, λPT , t0) during some

primary slot t0 to construct a path LC from μ to ν such that the multihop delay along this path is

independent of the distance d(μ, ν) (see Fig. 4 for an illustration). Then we analyze the multihop

delay tC(μ, ν) along LC .

μ
ν

wν

C(t0) LC

d(μ, ν)

Fig. 4. An illustration of the constructed path LC from μ to ν when (λS, λPT ) ∈ C. C(t0) is the infinite connected component

of G(λS , λPT , t0) which first contains μ, and wν is the user in C(t0) which is closest to ν.

Assume that μ starts trying to send the message at time t = 0. Let C(t) be the infinite

connected component in GH(λS, λPT , t), and t0 the first primary slot such that μ ∈ C(t0). Based

on (1), we know that the probability θ(λS, λPT ) that μ ∈ C(t) for each t is strictly positive. It

follows from the i.i.d. distribution of the primary network across slots that t0 is finite a.s. Given

C(t0), we define user wν as the user in C(t0) which is closest to ν, i.e.,

wν
Δ
= arg min

wi∈C(t0)

d(wi, ν).

Notice that if ν ∈ C(t0), then wν = ν.

As illustrated in Fig. 4, the constructed path LC passes through wν , then the multihop delay

tC(μ, ν) along the path LC can be expressed as:

tC(μ, ν) = t0 + t(μ, wν) + t(wν , ν) = t0 + t(wν , ν),

5It is shown in [25] that there exists either zero or one infinite connected component in GH(λS, λPT , t) a.s. for any given t.



TECHNICAL REPORT TR-09-02, UC DAVIS, SEPTEMBER 2009. 14

where t(wν , ν) is the MMD from wν to ν. In the last step, we have used t(μ, wν) = 0, since μ,

wν ∈ C(t0) and τ = 0. Next we show the following lemma.

Lemma 2: t(wν , ν) is finite a.s.

Proof of Lemma 2: We first show that d(wν, ν) < ∞ a.s. by using the ergodicity of the

CR network model, and then obtain an upper bound on the multihop delay along the shortest

path6 L(wν , ν) from wν to ν. Since t(wν , ν) ≤ tL(wν , ν) where tL(wν , ν) is the multihop delay

along L(wν , ν), the a.s. finiteness of t(wν , ν) follows from that of the upper bound on tL(wν , ν).

The proof here is inspired by the proof of Lemma 9 in [17], but with a much simpler proof of

d(wν , ν) < ∞. For details, see Appendix B.

It is easy to see that t0 and t(wν , ν) are independent of d(μ, ν). Then we conclude that

lim
d(μ,ν)→∞

tC(μ, ν)

g(d(μ, ν))
= 0 a.s.,

and T2.1 follows immediately from the fact that t(μ, ν) ≤ tC(μ, ν).

Proof of T2.2: Based on the scaling argument [24, Chapter 2], we set the transmission

range rp of the secondary users to 1 without loss of generality. Take μ as the origin, and the line

connecting μ and ν as the x-axis. Define an auxiliary node w̃i in C(GS(λS)) for every integer i:

w̃i
Δ
= arg min

w∈C(GS(λS))

d(w, (i, 0)).

Obviously, w̃0 = μ. Let n be the closest integer to ν, then

t(w̃0, w̃n) − t(w̃n, ν)

n + 1
≤ t(μ, ν)

d(μ, ν)
≤ t(w̃0, w̃n) + t(w̃n, ν)

n − 1
.

If w̃n = ν, then t(w̃n, ν) = 0; if w̃n �= ν, then t(w̃n, ν) is at most the single-hop delay because

d(w̃n, ν) ≤ d(w̃n, (n, 0)) + d(ν, (n, 0)) ≤ 2d(ν, (n, 0)) ≤ 1.

Let tm,n = t(w̃m, w̃n) for any two integers m, n. Then to show T2.2, it suffices to show that

lim
n→∞

t0,n

n
= β > 0 a.s. (3)

The proof of (3) is divided into the following two lemmas.

Lemma 3: β
Δ
= lim

n→∞
t0,n

n
exists a.s.

6The shortest path is the path from the source to the destination with the minimum number of hops. Notice that the shortest

path is not necessarily the minimum path, since the probability of having an opportunity is a function of the hop length and a

longer hop usually results in more waiting time.
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Lemma 4: 0 < β = lim
n→∞

t0,n

n
< ∞.

The proof of Lemma 3 is based on the Subadditive Ergodic Theorem [26, Theorem 1.10],

and the proof of Lemma 4 is based on the fact about the diameter7 of the finite connected

components formed by communication links in an intermittently connected network. For details,

see Appendix C and Appendix D.

B. Nonnegligible Propagation Delay

When the propagation delay τ > 0, it takes at least τ for the message to traverse a distance rp,

which imposes a lower bound τ/rp on the ratio of the MMD to the source-destination distance.

This implies that the MMD scales at least linearly with the source-destination distance.

The positive propagation delay τ also imposes an upper bound TS/τ on the maximum number

of hops that the message can traverse in a primary slot TS . For an instantaneously connected

network, this upper bound can be actually attained in the infinite connected component consisting

of communication links. But for an intermittently connected network, this upper bound may

probably not be attained due to the limited diameter of the finite connected components formed

by communication links, especially when the propagation delay τ is small. Specifically, there

may not exist a connected component which has a path with TS/τ hops. Thus, although the

scaling order is always linear, it can be expected that the scaling rate for an instantaneously

connected network is much smaller than the one for an intermittently connected network. The

following theorem summarizes the above observations in a rigorous form.

Theorem 3: Assume that τ > 0. For any two secondary users μ, ν ∈ C(GS(λS)), where

C(GS(λS)) is the infinite connected component of GS(λS), let tτ (μ, ν) denote the MMD from

μ to ν and d(μ, ν) the distance between μ and ν; then ∃ γ = γ(τ) > 0 such that

lim
d(μ,ν)→∞

tτ (μ, ν)

d(μ, ν)
= γ ≥ τ

rp

a.s.. (4)

Furthermore, if (λS, λPT ) ∈ C,

lim
τ→0

lim
d(μ,ν)→∞

tτ (μ, ν)

d(μ, ν)
= 0 a.s.; (5)

if (λS, λPT ) ∈ CI ,

lim
τ→0

lim
d(μ,ν)→∞

tτ (μ, ν)

d(μ, ν)
≥ β > 0 a.s., (6)

7The diameter of a connected component C is defined as max
μ,ν∈C

d(μ, ν).
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where β = lim
d(μ,ν)→∞

t(μ,ν)
d(μ,ν)

is defined in (2).

Proof Sketch: The equality in (4) is based on the Subadditive Ergodic Theorem [26], while

the inequality in (4) is a direct consequence of the simple observation above. The basic idea

behind establishing (5) is to consider the multihop delay along the path constructed in the proof

of T2.1. Eqn. (6) follows immediately from the fact that tτ (μ, ν) ≥ t(μ, ν), where t(μ, ν) is the

MMD when τ = 0. For details, see Appendix E.

V. SIMULATION RESULTS

In this section, we present several simulation results. The density λS of the simulated secondary

network is larger than the critical density λc. Thus, the secondary network is either instanta-

neously connected or intermittently connected, depending on the density λPT of the primary

transmitters. Without loss of generality, we assume that the source is located at the origin. Each

node in the network is a potential destination. This allows us to simulate different realizations

of the source-destination pair using one Monte Carlo run.

We obtain the MMD by considering the flooding scheme. Specifically, every user which has

received the message (including the source) will transmit the message to its neighbors within

its transmission range when it experiences a bidirectional spectrum opportunity to any of its

neighbors. The transmission attempts will not stop until all its neighbors receive the message.

The time that a user first receives the message during the flooding is considered as the MMD

from the source to this user. It is easy to see that simulating this flooding scheme gives us the

MMD when there is no contention between the secondary users’ transmissions.

Fig. 5 shows the MMD-to-distance ratio as a function of the source-destination distance when

the propagation delay τ is zero, where each dot represents a realization of the destination. We can

see that if the secondary network is instantaneously connected (Fig. 5-(a)), the ratio decreases

very fast as the distance increases, and it can be expected that the ratio will eventually tend

to zero. On the other hand, if the secondary network is intermittently connected (Fig. 5-(b)),

the decreasing rate of the ratio levels off as the distance increases, and the ratio will gradually

approach a positive constant. Note that in Fig. 5-(a), the MMD-to-distance ratios of different

realizations of the destination are grouped into several continuous curves, each associated with

a fixed MMD. Specifically, since the message is mainly delivered via the infinite connected

component consisting of communication links when the secondary network is instantaneously
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connected, the secondary users are actually grouped according to the first time that they are in

an infinite connected component. From Fig. 5-(a) we can see that due to the temporal dynamics

of spectrum opportunities, every node will be part of an infinite connected component within a

few number of primary slots.
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(a) instantaneously connected (λPT = 10km−2, τ = 0)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

10
−2

10
−1

10
0

Source−to−Destination Distance (km)

M
M

D
−

to
−

D
is

ta
nc

e 
R

at
io

 (
s/

m
)

(b) intermittently connected (λPT = 50km−2, τ = 0)
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(c) instantaneously connected (λPT = 10km−2, τ = 0.01s)
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(d) intermittently connected (λPT = 50km−2, τ = 0.01s)

Fig. 5. MMD-to-distance ratio (in logarithmic scale) vs. the source-to-destination distance. Notice that the MMD-to-distance

ratio is obtained in one Monte Carlo run. The secondary users are distributed within a square [−5km, 5km] × [−5km, 5km]

according to a homogeneous Poisson point process with density λS = 700km−2. Given the transmission range rp = 50m of

the secondary users, we have that λS is larger than the critical density λc(50) = 576km−2. Some other simulation parameters

are given by rI = 80m, Rp = 50m, RI = 80m, and TS = 1s.

In Fig. 5, we compare the MMD-to-distance ratio in an instantaneously connected network

and in an intermittently connected network when the propagation delay τ is nonzero but small.
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The two red dashed lines in Fig. 5(c)(d) denote the lower bound τ/rp on the ratio imposed by

the propagation delay. Although the ratio for the instantaneously connected network does not go

to zero due to the nonnegligible propagation delay, it is 10 times smaller than the ratio for the

intermittently connected network.

VI. CONCLUSION AND DISCUSSION

We have studied the connectivity and multihop delay of ad hoc cognitive radio networks.

The impact of connectivity on the multihop delay has been examined by establishing the scal-

ing behavior of the minimum multihop delay with respect to the source-destination distance.

Specifically, depending on whether the cognitive radio network is instantaneously connected or

intermittently connected, the scaling of the minimum multihop delay behaves distinctly, in terms

of either the scaling order when the propagation delay is negligible or the scaling rate when the

propagation delay is nonnegligible. This result on scaling is independent of the random positions

of the source and the destination, and it only depends on the network parameters (e.g., the density

of the secondary users and the traffic load of the primary network). In establishing these results,

we have used theories and techniques from continuum percolation and ergodicity including the

concept of critical density, the FKG inequality, the discretization technique, and the Subadditive

Ergodic Theorem.

In the above analysis, we have assumed a disk signal propagation model which only incor-

porates the path-loss. If we take into account fading, then the condition for the existence of a

topological link between two secondary users should be changed into the received SNR at each

user. Since a fixed transmission range does not hold here, this leads to a random connection

model (RCM) [24, Chapter 1] where, for any two users in the network, there exists a link

connecting them with some probability (maybe zero) depending on the distance between them.

Considering that the RCM shares several basic properties (e.g., the ergodicity and the existence

of the critical density) with the Boolean model used in this technical report, we expect that the

results established here can be extended to the RCM, although the derivations may become more

complicated.

We have also assumed that the interference region can be represented by a circle with a fixed

radius. It is possible that interference aggregated from multiple interferers outside the interference

region cause an outage at the receiver. By choosing a conservative interference range, however,
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this possibility is negligible [27].

APPENDIX A: PROBABILITY OF A BIDIRECTIONAL SPECTRUM OPPORTUNITY

The expression for the probability of a bidirectional spectrum opportunity is presented in the

following proposition.

Proposition 1: Let λPT be the density of the primary transmitters. Let rI and RI be the inter-

ference range of the secondary and primary users, respectively, and rp and Rp the transmission

range of the secondary and primary users, respectively. Then for any two secondary users μ and

ν with distance d ≤ rp apart, the probability p0 of having a bidirectional spectrum opportunity

at the topological link eμν connecting μ and ν is given by

p0 = exp

{
− λPT

[
2π(r2

I + R2
I) − SI(d, rI , rI) − SI(d, RI , RI)

−
∫∫

SU2(d,RI ,RI)

SI2(r, θ, Rp, d, rI)

πR2
p

rdrdθ
]}

, (A1)

where SI(d, r1, r2) the common area of two circles with radii r1 and r2 and centered d apart

(see Fig. 6-(a)), and SU2(d, r1, r2) is the union of two circles with radii r1 and r2 and centered d

apart (see Fig. 6-(b)). SI2(r, θ, Rp, d, rI) is the intersection area between one circle with radius

Rp and the union of the two circles with both radii rI (see Fig. 6-(c)). For SI2(r, θ, Rp, d, rI),

the two identical circles are centered d apart, and the other circle is centered at (r, θ), where the

middle point of the centers of the two identical circles is chosen to be the origin O.

The expression for SI(d, r1, r2) can be obtained in explicit form, which can be found in [28,

Appendix A]. The expression for SI2(r, θ, Rp, d, rI) depends on the expression for the common

area of three circles which is tedious and is given in [29].

From (A1), we can easily see that the probability p0 of a bidirectional opportunity is a function

of the distance d between μ and ν. Moreover, although p0 is an exponentially decreasing function

of λPT , it is strictly positive no matter how large λPT is.

Proof: From the definition of spectrum opportunity given in Sec. III-A, we know that a

bidirectional spectrum opportunity occurs at eμν if and only if there are no primary transmitters

within distance RI of either μ or ν and no primary receivers within distance rI of either μ or ν.

Let I(μ, d, rx/tx) denote the event that there exists primary receivers/transmitters within dis-

tance d of a secondary user μ. Let I(μ, d, rx/tx) denote the complement of I(μ, d, rx/tx). Then
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SI(d, r1, r2) SU2(d, r1, r2)

SI2(r, θ, Rp, d, rI)

(a) (b)

(c)

Fig. 6. An illustration of SI(d, r1, r2) (the common area of two circles with radii r1 and r2 and centered t apart), SU2(d, r1, r2)

(the union area of two circles with radii r1 and r2 and centered d apart), and SI2(r, θ, Rp, d, rI) (the intersection area between

one circle with radius Rp and the union of the two identical circles with radii rI ).

the probability p0 of a bidirectional opportunity at eμν is given by

p0 = Pr{I(ν, rI , rx) ∩ I(ν, RI , tx) ∩ I(μ, rI , rx) ∩ I(μ, RI , tx)}

= Pr{I(ν, RI , tx) ∩ I(μ, RI , tx)| I(ν, rI , rx) ∩ I(μ, rI , rx)}Pr{I(ν, rI , rx) ∩ I(μ, rI , rx)}. (A2)

Next, we compute the two probabilities in (A2) one by one. Since the primary receivers admit

a Poisson point process XPR with density λPT , we have

Pr{I(ν, rI , rx) ∩ I(μ, rI , rx)} = exp[−λPT (2πr2
I − SI(d, rI , rI))], (A3)

where SI(d, rI , rI) is the common area of two circles with both radii rI and centered t apart

(see Fig. 6-(a)).

Let XPT denote the Poisson point process formed by primary transmitters. If we remove from

XPT primary transmitters whose receivers are within distance rI of either ν or μ, then it follows

from Coloring Theorem [22, Chapter 5] that all the remaining primary transmitters form another
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Poisson point process with density λPT

[
1 − SI2(r,θ,Rp,d,rI)

πR2
p

]
, where SI2(r, θ, Rp, d, rI) is the area

of the circle with radius Rp and centered at (r, θ) intersecting the two circles both with radii rI

and centered d apart (see Fig. 6-(c)). We thus have

Pr{I(ν, RI , tx) ∩ I(μ, RI , tx)| I(ν, rI , rx) ∩ I(μ, rI , rx)}

= exp

⎧⎪⎨
⎪⎩−λPT

∫∫
SU2(d,RI ,RI)

[
1 − SI2(r, θ, Rp, d, rI)

πR2
p

rdrdθ

]⎫⎪⎬
⎪⎭

= exp

⎧⎪⎨
⎪⎩−λPT

⎡
⎢⎣2πR2

I − SI(d, RI , RI) −
∫∫

SU2(d,RI ,RI)

SI2(r, θ, Rp, d, rI)

πR2
p

rdrdθ

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (A4)

where SU2(d, RI , RI) is the union of two circles both with radii RI and centered d apart (see

Fig. 6-(b)). Then plugging (A3), (A4) into (A2) yields (A1).

Based on Proposition 1, we establish an inequality on the minimum expected single-hop delay

for all hop lengths in the following proposition.

Proposition 2: Given the parameters of the primary and secondary network (i.e., λPT , rp, rI ,

Rp, and RI are fixed), let ts(d) be the single-hop delay for the hop length d, and tm the minimum

expected single-hop delay for all hop lengths when the propagation delay τ = 0, i.e.,

tm = min
0≤d≤rp

{E[ts(d)| τ = 0]}.
Then we have tm > 0.

Proof: It follows from Proposition 1 that for fixed λPT , rp, rI , Rp, and RI , the probability

p0 of the bidirectional opportunity is a function of the hop length d, i.e., p0 = p0(d). Let tsw(d)

be the waiting time for the bidirectional opportunity at the link with length d, then given that

τ < TS = 1, tsw(d) is a geometric random variable with parameter p0(d) due to the i.i.d.

distribution of the primary network across slots. The mean of tsw(d) is thus given by

E[tsw(d)] =
1 − p0(d)

p0(d)
,

which is a monotonically decreasing function of p0(d).

From (A2), we have that for all 0 ≤ d ≤ rp,

p0(d) = Pr{I(ν, rI , rx) ∩ I(ν, RI , tx) ∩ I(μ, rI , rx) ∩ I(μ, RI , tx)}
≤ Pr{I(μ, rI , rx) ∩ I(μ, RI , tx)}

= exp[−λPT π(r2
I + R2

I − I(RI , Rp, rI))] < 1,
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where the last equality has been obtained by setting the distance d = 0 in the expression for the

probability of a unidirectional opportunity between two secondary users with distance d apart

given in Proposition 1 in [28], and

I(RI , Rp, rI) = 2

∫ RI

0

t
SI(t, Rp, rI)

πR2
p

dt < r2
I .

An expression for I(RI , Rp, rI) in explicit form can be found in [28, Appendix A].

Let δ = exp[−λPT π(r2
I + R2

I − I(RI , Rp, rI))]. Obviously, 0 < δ < 1. When τ = 0, we have

that ∀ 0 ≤ d ≤ rp,

E[ts(d)] = E[tsw(d)] =
1 − p0(d)

p0(d)
≥ 1 − δ

δ
.

Thus,

tm = min
0≤d≤rp

{E[ts(d)| τ = 0]} ≥ 1 − δ

δ
> 0.

APPENDIX B: PROOF OF LEMMA 2

We first establish that d(wν, ν) < ∞. Since d(wν , ν) ≤ d(wν, (0, 0)) + d(ν, (0, 0)) and

d(ν, (0, 0)) < ∞ a.s., it follows that d(wν , ν) < ∞ a.s. if d(wν, (0, 0)) < ∞ a.s. Consider

the following three events:

E = {d(wν, (0, 0)) < ∞},
Er = { wν ∈ C(t0) such that d(wν , (0, 0)) ≤ r},

Er1 = { wν ∈ GS(λS) such that d(wν , (0, 0)) ≤ r}.
Then we have that for a fixed r > 0,

Pr{E} ≥ Pr{Er} ≥ Pr{Er1}θ(λS, λPT ) = [1 − exp(−λSπr2)]θ(λS, λPT ) > 0,

where θ(λS, λPT ) is defined in (1) and is strictly positive since (λS, λPT ) ∈ C. It is easy to see

that the event E is invariant of the shift transformations8. Thus, based on the ergodicity9 of the

8For a random model in a Euclidean space R
d with a probability space (Ω, F, μ), the shift transformation Sx is to shift the

realization ω ∈ Ω by x ∈ R
d.

9A random model under a probability space (Ω, F, μ) is said to be ergodic if there exists a transformation group {Sx : x ∈
R

d or Z
d} that acts ergodically on (Ω, F, μ). A transformation group {Sx : x ∈ R

d or Z
d} is said to act ergodically if the

σ-algebra of events invariant under the whole group is trivial, i.e., any invariant event has measure either zero or one. For an

ergodic random model (Ω, F, μ), if an event E ∈ F invariant under the whole transformation group {Sx : x ∈ R
d or Z

d}
occurs with a positive probability, i.e., μ(E) > 0, then it occurs a.s., i.e., μ(E) = 1.



TECHNICAL REPORT TR-09-02, UC DAVIS, SEPTEMBER 2009. 23

CR network model [25], we conclude that Pr{E} = 1, i.e., d(wν, (0, 0)) < ∞ a.s.

Next we show that the multihop delay tL(wν , ν) along the shortest path L(wν , ν) between wν

and ν is finite a.s. We do this in multiple steps. Without loss of generality, we set rp to be 1.

First we show that there exists a sequence of topologically connected nodes intersecting squares

containing wν and ν with positive probability. Second, we show that a closed circuit of connected

users exists in each square. Third, we show that a finite hop-length path from wν to ν exists

within a square. Finally, we show that this implies a finite multihop-delay path from wν to ν.

Step 1: We construct a sequence of concentric squares with increasing side lengths as illustrated

in Fig. 7. Specifically, all the squares are centered at the midpoint of the segment joining wν

and ν, and the side length of the j-th (j ≥ 0) square Sj is 3jd. Let Aj (j ≥ 1) denote the square

annulus inside Sj and outside Sj−1, and let Eu
j be the event that there exists a left-to-right

crossing10 in the upper horizontal rectangle of Aj with side length 3jd×3j−1d. Similarly, define

Eb
j , El

j, and Er
j as the events that the bottom, left, and right rectangles of Aj are crossed from left

to right or from top to bottom. By symmetry, we know that Pr(Eu
j ) = Pr(Eb

j ) = Pr(El
j) = Pr(Er

j ).

Since (λS, λPT ) ∈ C, it follows that λS > λc where λc is the critical density for a homogeneous

network. By using Corollary 4.1 in [24], we have that lim
d→∞

Pr{Eu
1 } = 1. Then for a given δ,

0 < δ < 1, we choose

d = dδ
Δ
= max{inf{d′ : Pr{Eu

1 } ≥ δ if d ≥ d′}, d(wν, ν)}.

We then have that Pr{Eu
j } ≥ δ > 0 for all j ≥ 1.

Step 2: Let Ej (j ≥ 1) be the event that there exists a closed circuit of connected users in

G(λS) within Aj . If Eu
j , Eb

j , El
j , and Er

j all occur, then Ej occurs (see Fig. 7). Since Eu
j , Eb

j ,

El
j , and Er

j are all increasing events11, it follows from the FKG inequality [24, Theorem 2.2]

that

Pr{Ej} ≥ Pr{Eu
j ∩ Eb

j ∩ El
j ∩ Er

j } ≥ Pr{Eu
j }Pr{Eb

j}Pr{El
j}Pr{Er

j } ≥ δ4 > 0.

10A left-to-right crossing exists in a rectangle R = [x1, x2] × [y1, y2] if and only if there exists a sequence of nodes μi

(1 ≤ i ≤ n) in G(λS) such that (i) μi ∈ R for all i; (ii) d(μi+1, μi) ≤ 1 for all 1 ≤ i < n; (iii) |x(μ1) − x1| ≤ 1
2

and

|x(μn)−x2| ≤ 1
2
, where x(μi) is the x-coordinate of μi. The top-to-bottom crossing can be defined analogously. Note that the

sequence of nodes constituting the crossing represent a topologically connected path.

11Consider two realizations ω and ω′ of G(λS). A partial ordering ‘�’ is defined as ω � ω′ if and only if every node in ω

is also present in ω′. In other words, ω can be obtained from ω′ by removing some secondary users. An event E is said to be

increasing if for every ω � ω′, IE(ω) ≤ IE(ω′), where IE is the indicator function of the event E.
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wν ν

O

3j−1d

3jd

Eu
j

Eb
j

El
j

Er
j

Fig. 7. A sequence {Sj : j ≥ 0} of squares cocentered at the middle point O of wν and ν. The shaded region is the

square annulus Aj inside Sj with side length 3jd and outside Sj−1 with side length 3j−1d. In this example, the four crossings

associated with the four events Eu
j , Eb

j , El
j , and Er

j all exist in the corresponding four rectangles, which form a closed circuit

in Aj .

Step 3: When Ej occurs, we claim that there exists a path L′(wν , ν) from wν to ν within Sj.

If all the paths from wν to ν go outside Sj , they will intersect the closed circuit in Aj and then

we can construct a path L′(wν , ν) within Sj by using part of the closed circuit.

As illustrated in Fig. 8, we place a circle with radius 1
2

at each user along L′(wν , ν). It is easy

to see that any two circles centered at the two users which are not neighbors on L′(wν , ν) do not

overlap; otherwise we can shorten the path by skipping the users between them. Thus, given the

number of hops |L′(wν , ν)|, at least
⌈
|L′(wν ,ν)|

2

⌉
nonoverlapping circles centered at alternating

nodes on L′(wν , ν) can be found, and they are all contained within the square with side length

3jdδ +1. It follows that |L′(wν , ν)| ≤ 2 �4(3jdδ + 1)2/π� < ∞, where 2 �4(3jdδ + 1)2/π� is the
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maximum number of nonoverlapping circles with radius 1
2

within the square with side length

3jdδ + 1.

Fig. 8. An illustration of nonoverlapping colored circles with radii 1
2

centered at alternating nodes on the path L′(wν , ν).

Step 4: Since Ej are independent, and
∑∞

j=1 Pr{Ej} ≥ ∑∞
j=1 δ4 = ∞, it follows from the

Borel-Cantelli Lemma that Ej occurs for some j a.s. We thus have that |L′(wν , ν)| < ∞ a.s.

It implies that |L(wν, ν)| ≤ |L′(wν , ν)| < ∞ a.s., which, together with the a.s. finiteness of the

single-hop delay (see Lemma 1), yields the a.s. finiteness of the multihop delay tL(wν , ν) along

the shortest path L(wν , ν). Hence, t(wν , ν) ≤ tL(wν, ν) < ∞ a.s.

APPENDIX C: PROOF OF LEMMA 3

The proof is based on the Subadditive Ergodic Theorem which is stated next:

Fact 1: [26, Theorem 1.10] Let {tm,n} be a collection of random variables indexed by integers

satisfying 0 ≤ m < n. Suppose {tm,n} has the following properties: (i) t0,n ≤ t0,m + tm,n; (ii)

for each n, E(|t0,n|) < ∞ and E(t0,n) ≥ cn for some constant c > −∞; (iii) the distribution

of {tm,m+k : k ≥ 1} does not depend on m; (iv) for each k ≥ 1, {tnk,(n+1)k : n ≥ 0} is a

stationary sequence.

Then: (a) η
Δ
= lim

n→∞
E[t0,n]

n
= inf

n≥1

E[t0,n]

n
; (b) T

Δ
= lim

n→∞
t0,n

n
exists a.s; (c) E[T ] = η.

Furthermore, if (v) the stationary sequence in (iv) is ergodic, then (d) T = η a.s.

By the definition of the MMD and the stationarity of the CR network model, it is obvious

that conditions (i), (iii), and (iv) hold for {tm,n}. We only need to show that conditions (ii) and

(v) also hold for {tm,n}.

Verification of condition (ii): We first show that E(|t0,n|) < ∞ for each n. By using the

techniques similar to showing d(wν , (0, 0)) < ∞ a.s. in the proof of Lemma 2, we can easily
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see that d(w̃0, (0, 0)) < ∞ a.s. as well as d(w̃n, (n, 0)) < ∞ a.s. It follows that d(w̃0, w̃n) ≤
d(w̃0, (0, 0)) + n + d(w̃n, (n, 0)) < ∞ a.s.

Let L(w̃0, w̃n) be the shortest path from w̃0 to w̃n. Let |L| denote the number of hops of

L(w̃0, w̃n) and tL0,n the multihop delay along L(w̃0, w̃n). Consider the sequence {Sj : j ≥ 0}
of squares constructed in the proof of Lemma 2 (see Fig. 7). For any given 4

√
8
9

< δ < 1, we

choose

d = dδ
Δ
= max{inf{d′ : Pr{Eu

1 } ≥ δ if d = d′}, d(w̃0, w̃n)}.

Similarly, when the event Ej (j ≥ 1) occurs, we have |L| ≤ 2 �4(3jdδ + 1)2/π�.
If |L(w̃0, w̃n)| > 2 �4(3jdδ + 1)2/π�, then none of the events E1, E2,...,Ej occur. Thus

Pr
{|L| > 2

⌈
4(3jdδ + 1)2/π

⌉} ≤
j∏

i=1

Pr{Ec
i } ≤ (1 − δ4)j .

Let M = 2 �4(3dδ + 1)2/π�, then we have

E[|L|] =

∞∑
k=0

Pr{|L| > k} =

M∑
k=0

Pr{|L| > k} +

∞∑
k=M+1

Pr{|L| > k}

≤ M +

∞∑
j=1

2
⌈
4(3j+1dδ + 1)2/π

⌉
Pr{|L| > 2

⌈
4(3jdδ + 1)2/π

⌉}
≤ M +

∞∑
j=1

2
⌈
4(3j+1dδ + 1)2/π

⌉
(1 − δ4)j

≤ M +
72d2

δ

π

∞∑
j=1

9j(1 − δ4)j +
48dδ

π

∞∑
j=1

3j(1 − δ4)j + 2

(
4

π
+ 1

) ∞∑
j=1

(1 − δ4)j.

If δ > 4

√
8
9
, (1 − δ4)j < 9−j which implies that E[|L|] < ∞. Let tM = max

0≤d≤1
{E[ts(d)]} be

the maximum expected single-hop delay for all hop lengths 0 ≤ d ≤ 1, then for all n ≥ 1,

E[t0,n] ≤ E[tL0,n] ≤ tME[|L|] < ∞, i.e., {tm,n} satisfies the condition (ii).

Verification of condition (v): We show that {tnk,(n+1)k : n ≥ 0} is mixing12, which implies its

ergodicity. As illustrated in Fig. 9, we construct two squares Sn and Sn+j centered at
(

(2n+1)k
2

, 0
)

and
(

[2(n+j)+1]k
2

, 0
)

with side length dn and dn+j . Let L∗
n be the minimum path from w̃nk to

12A measure preserving transformation T is said to be mixing on a probability space (Ω, F, μ) if for all E, F ∈ F,

μ(T nE ∩ F ) − μ(E)μ(F ) → 0 as n → ∞. A sequence {xk} is said to be mixing if the unit right-shift transformation is

mixing on its probability space. The mixing property of a sequence implies its ergodicity [30].
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w̃nk

w̃(n+1)k
w̃(n+j)k

w̃(n+j+1)k

jk

L∗
n

L∗
n+j

Sn

Sn+j
dn

dn+j

Fig. 9. The two minimum paths L∗
n (from w̃nk to w̃(n+1)k) and L∗

n+j (from w̃(n+j)k to w̃(n+j+1)k) are contained in the two

squares Sn and Sn+j centered at ((2n + 1)k/2, 0) and ((2n + 2j + 1)k/2, 0) with finite side length dn and dn+j , respectively.

As j → ∞, Sn and Sn+j become nonoverlapping, and thus the multihop delay along L∗
n is asymptotically independent of the

one along L∗
n+j .

w̃(n+1)k. We claim that the two minimum paths L∗
n and L∗

n+j are a.s. contained in Sn and Sn+j ,

respectively, for some dn, dn+j > 0. If, for example,

Pr{En} = Pr{L∗
n is not contained in any finite Sn} > 0,

then with a positive probability |L∗
n| = ∞, which implies that

E[tnk,(n+1)k] ≥ E[tnk,(n+1)k| En]Pr{En} ≥ tmE[|L∗
n| | En]Pr{En} = ∞,

with tm = min
0≤d≤1

{E[ts(d)]} > 0 being the minimum expected single-hop delay for all hop

lengths13. This contradicts E[tnk,(n+1)k] < ∞. Now we have that as j → ∞, not only do the two

minimum paths L∗
n and Ln+j not share any common secondary users a.s., but also the subsets

of the primary transmitter-receiver pairs that affect their multihop delays become disjoint a.s.

Thus, tnk,(n+1)k and t(n+j)k,(n+j+1)k are asymptotically independent of each other as j → ∞, i.e.,

lim
j→∞

Pr
{(

tnk,(n+1)k < t
) ∩ (t(n+j)k,(n+j+1)k < t′

)}
= Pr{tnk,(n+1)k < t}Pr{tnk,(n+1)k < t′}. The

mixing property of {tnk,(n+1)k : n ≥ 0} follows immediately. Since all the five conditions in

Fact 1 are satisfied by {tm,n}, we conclude that ∃β ≥ 0 such that lim
n→∞

t0,n

n
= β a.s.

13The inequality tm > 0 is shown in Proposition 2 (see Appendix A).
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APPENDIX D: PROOF OF LEMMA 4

We will need the following to prove Lemma 4.

Fact 2: Given GH(λS, λPT , t) for any t with (λS, λPT ) /∈ C, let Bh = [−h, h]2 (h > 0) and

take an arbitrary secondary user as the origin. Then ∃ C1, C2 > 0 such that Pr{O � (Bh)
c} ≤

C1 exp(−C2h), where {O � (Bh)
c} denotes the event that the origin is connected with some

secondary user outside Bh, i.e., the origin and some node in (Bh)
c belong to the same connected

component formed by communication links.

This fact can be easily proven by using techniques similar to the ones used in proving Theorem

2.4 in [24]. It provides an upper bound on the CDF of the diameter of the connected component

formed by communication links in a secondary network that is not instantaneously connected.

From Fact 1, we know that

β = inf
n≥1

E[t0,n]

n
≤ E[t0,1] < ∞.

Choose H > 0 such that C1 exp(−C2H) < 1
2
, where C1 and C2 are the constants specified

in Fact 2. For any path L from w̃0 to w̃n, we partition it into several segments in the following

way; see Fig. 10. Define a sequence {Ri : i ≥ 1} of uniformly distributed ribbons on R
2 as

Ri = {(x, y) ∈ R
2 : H + (i − 1)(H + 1) ≤ x − x(w̃0) < i(H + 1)},

where x(w̃0) is the x-coordinate of user w̃0. Since the width of each ribbon is 1 which is equal

to rp, there exists at least one user zi within each Ri that lies between w̃0 and w̃n. Assume that

these zi partition the path L into m segments, then the multihop delay tL along the path L can

be written as

tL =
m∑

i=1

tL(zi−1, zi), (D1)

where z0 = w̃0 and zm = w̃n.

Based on Fact 2, with a probability greater than 1
2

at least one hop on the segment of L from

zi−1 to zi does not see the opportunity. We thus have that for all 1 ≤ i ≤ m − 1,

E[tL(zi−1, zi)] >
1

2
tm, (D2)

where tm = min
0≤d≤1

{E[t(d)]} > 0.
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w̃0

w̃n

R1 R2 Rm−1

z1

z2

zm−1

x

0 n

HHH

Fig. 10. A path L from w̃0 to w̃n which is partitioned into m segments by users zi (1 ≤ i ≤ m − 1) within these shaded

ribbons Ri between w̃0 and w̃n. Recall that w̃0 is the user in the infinite topologically connected component which is closest

to the coordinate (0, 0) and w̃n is the user in the infinite topologically connected component which is closest to the coordinate

(n, 0).

Since d(w̃0, w̃n) ≥ n − d(w̃0, (0, 0)) − d(w̃n, (n, 0)), and both d(w̃0, (0, 0)) and d(w̃n, (n, 0))

are finite a.s., it follows that lim
n→∞

Pr{d(w̃0, w̃n) > n
2
} = 1. When d(w̃0, w̃n) > n

2
holds, any path

from w̃0 to w̃n has at least
⌊

n
2(H+1)

⌋
segments. By recalling (D1), (D2), we conclude that

β = lim
n→∞

E[t0,n]

n
> lim

n→∞
tm
2n

⌊
n

2(H + 1)

⌋
Pr
{
d(w̃0, w̃n) >

n

2

}
> lim

n→∞
tm
2

(
1

2(H + 1)
− 1

n

)
> 0.

This implies that β = lim
n→∞

t0,n

n
> 0.

APPENDIX E: PROOF OF THEOREM 3

Similarly to the proof of T2.2, in order to show the a.s. existence of lim
d(μ,ν)→∞

tτ (μ,ν)
d(μ,ν)

, it suffices

to prove that lim
n→∞

tτ0,n

n
exists a.s. By the same argument that was used in the proof of Lemma 3,

we can easily verify the five conditions in Fact 1. Then the a.s. existence of lim
n→∞

tτ0,n

n
follows.

Let γ = γ(τ) = lim
d(μ,ν)→∞

tτ (μ,ν)
d(μ,ν)

. Since the minimum number of hops between μ and ν is

d(μ, ν)/rp� and the minimum single-hop delay is τ , we have tτ (μ, ν) ≥ τd(μ, ν)/rp�, which

implies that γ ≥ τ/rp.

From Fact 1, we have that for any τ > 0,

γ(τ) = lim
d(μ,ν)→∞

tτ (μ, ν)

d(μ, ν)
= lim

d(μ,ν)→∞
E[tτ (μ, ν)]

d(μ, ν)
a.s.

Since E[tτ0,n] decreases as τ decreases and it is strictly positive, it follows that lim
τ→0

lim
d(μ,ν)→∞

E[tτ (μ,ν)]
d(μ,ν)

exists. Thus, lim
τ→0

lim
d(μ,ν)→∞

tτ (μ,ν)
d(μ,ν)

exists a.s.
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If (λS, λPT ) ∈ CI , then

lim
τ→0

lim
d(μ,ν)→∞

tτ (μ, ν)

d(μ, ν)
≥ lim

τ→0
lim

d(μ,ν)→∞
t(μ, ν)

d(μ, ν)
= β,

where t(μ, ν) is the MMD from μ to ν when τ = 0, and β is defined in (2).

If (λS, λPT ) ∈ C, then we consider the path LC from μ to ν constructed in the proof of

T2.1 which contains some nodes of the infinite connected component C(t0) in GH(λS, λPT , t0).

Notice that for fixed d(μ, ν), only a finite number of hops on LC belong to C(t0). Thus if τ

is sufficiently small, it takes at most one primary slot for the message to transmit from the

source μ in C(t0) to the end node wν . Then we have that for some small τ0 = τ0(d(μ, ν)) > 0,

tCτ0(μ, ν) ≤ t0 + tτ0(wν , ν) + 1, where tCτ0(μ, ν) denotes the multihop delay along the path LC

when the propagation delay is τ0. It implies that

lim
τ→0

γ(τ) = lim
τ→0

lim
d(μ,ν)→∞

E[tτ (μ, ν)]

d(μ, ν)
= lim

d(μ,ν)→∞
lim
τ→0

E[tτ (μ, ν)]

d(μ, ν)

≤ lim
d(μ,ν)→∞

E[tCτ0(μ, ν)]

d(μ, ν)
≤ lim

d(μ,ν)→∞
E[t0] + E[tτ0(wν , ν)] + 1

d(μ, ν)
= 0,

since both E[t0] and E[tτ0(wν , ν)] are finite and independent of d(μ, ν). In the second equality,

we can interchange the order of the two limits because E[tτ (μ, ν)] < ∞. Consequently, we

conclude that a.s.

lim
τ→0

lim
d(μ,ν)→∞

tτ (μ, ν)

d(μ, ν)
= lim

τ→0
γ(τ) = 0.
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